I. Introduction

II. Project Background
 I. Site Overview
 II. Project Features

III. Analysis 1 | Integrated Delivery Methods
 I. Overview & Case Studies
 II. Application to Project
 III. Conclusion

IV. Analysis 2 | Modular Concrete Formwork
 I. Potential Replacements & Chosen Formwork System
 II. Structural Breadth
 III. Cost and Schedule Impact Analysis

V. Analysis 3 | Terra Cotta Rain Screen Pre-fabrication
 I. Research and Feasibility
 II. Cost and Schedule Comparisons
 III. Mechanical Breadth and Conclusion

VI. Conclusions and Recommendations

VII. Acknowledgements
Government Building
Maryland

<table>
<thead>
<tr>
<th>Project Size</th>
<th>$20,000 SF (200,000 SF Parking Garage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Stories</td>
<td>10</td>
</tr>
<tr>
<td>Contract Value</td>
<td>$75 million</td>
</tr>
<tr>
<td>Estimated Cost-to-Date</td>
<td>$100 million</td>
</tr>
<tr>
<td>Occupancy Type</td>
<td>Office (Type B)</td>
</tr>
<tr>
<td>CM at Risk</td>
<td>The James G. Davis Construction Corp.</td>
</tr>
<tr>
<td>Owner/Developer</td>
<td>The JBG Companies</td>
</tr>
<tr>
<td>Architect</td>
<td>HOK</td>
</tr>
</tbody>
</table>

Andrew Pino | AE Senior Thesis | Construction Management Option
Presentation Outline

I. Introduction
 II. Project Background
 I. Site Overview
 II. Project Features
 III. Analysis 1 | Integrated Delivery
 I. Overview & Case Studies
 II. Application to Project
 III. Conclusion
 IV. Analysis 2 | Modular Formwork
 I. Formwork Systems
 II. Structural Breadth
 III. Cost and Schedule
 V. Analysis 3 | Terra Cotta
 I. Overview of Systems
 II. Cost and Schedule
 III. Mechanical Breadth
 VI. Conclusions and Recommendations
 VII. Acknowledgements

Existing Site Plan

Construction Site Plan

Site Logistics Plan - Structure

Andrew Pino | AE Senior Thesis | Construction Management Option

Government Building Maryland
I. Introduction

II. Project Background
 I. Site Overview
 II. Project Features

III. Analysis 1 | Integrated Delivery
 I. Overview & Case Studies
 II. Application to Project
 III. Conclusion

IV. Analysis 2 | Modular Formwork
 I. Formwork Systems
 II. Structural Breadth
 III. Cost and Schedule

V. Analysis 3 | Terra Cotta
 I. Overview of Systems
 II. Cost and Schedule
 III. Mechanical Breadth

VI. Conclusions and Recommendations

VII. Acknowledgements

Project Features

- Concrete batch plant
- Post-tensioned concrete
- Terra cotta rain screen
- Pursuing LEED Silver
Analysis #1 | Integrated Delivery Methods

Problem Statement:
Traditional design-bid-build delivery methods have the potential to hinder the design change approval process.
I. Introduction

II. Project Background
 I. Site Overview
 II. Project Features

III. Analysis 1 | Integrated Delivery
 I. Overview & Case Studies
 II. Application to Project
 III. Conclusion

IV. Analysis 2 | Modular Formwork
 I. Formwork Systems
 II. Structural Breadth
 III. Cost and Schedule

V. Analysis 3 | Terra Cotta
 I. Overview of Systems
 II. Cost and Schedule
 III. Mechanical Breadth

VI. Conclusions and Recommendations
VII. Acknowledgements
Presentation Outline

I. Introduction
II. Project Background
 I. Site Overview
 II. Project Features
III. Analysis 1 | Integrated Delivery
 I. Overview & Case Studies
 II. Application to Project
 III. Conclusion
IV. Analysis 2 | Modular Formwork
 I. Formwork Systems
 II. Structural Breadth
 III. Cost and Schedule
V. Analysis 3 | Terra Cotta
 I. Overview of Systems
 II. Cost and Schedule
 III. Mechanical Breadth
VI. Conclusions and Recommendations
 I. Recommendations

Case Studies

Case Study #1
Project comparison

<table>
<thead>
<tr>
<th>Case Study #1 – Project Comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item Description</td>
</tr>
<tr>
<td>Contract Value</td>
</tr>
<tr>
<td>Construction Duration</td>
</tr>
<tr>
<td>Construction Work Hours</td>
</tr>
<tr>
<td>Total Labor Cost</td>
</tr>
<tr>
<td>Percentage of Total Project Cost</td>
</tr>
</tbody>
</table>

Common Themes

Teams Processes Risk Reward Communication Documentation Agreements

Unit cost fluctuations greater with D/B
- D/B - 185 percentage points
- D/B/B - 102 percentage points
Lower D/B labor cost percentage
Early contractor involvement is critical

Case Study #2
Survey of 200+ industry professionals

Success Criteria
- Meeting client’s criteria
- Budget and schedule met
- Reduction in disputes
- Overall quality

Success Factors
- Clearly defined scope
- Good relationships
- Contractor experience
- End user’s early input
- Client participation

Survey Results
- Time/schedule
- Cost
- Quality
- Functionality

Andrew Pino | AE Senior Thesis | Construction Management Option
Presentation Outline

I. Introduction
II. Project Background
 I. Site Overview
 II. Project Features
III. Analysis 1 | Integrated Delivery
 I. Overview & Case Studies
 II. Application to Project
IV. Analysis 2 | Modular Formwork
 I. Formwork Systems
 II. Structural Breadth
 III. Cost and Schedule
V. Analysis 3 | Terra Cotta
 I. Overview of Systems
 II. Cost and Schedule
 III. Mechanical Breadth
VI. Conclusions and Recommendations
VII. Acknowledgements

Application to Project

Targeted Benefits

- Early contributions to design
- Reduced design conflicts and RFI’s
- Improved schedule management
- Reduced design documentation time

Integration Benefits

<table>
<thead>
<tr>
<th>Benefit Description</th>
<th>Owners</th>
<th>Contractors</th>
<th>Designers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decreased Life Cycle Costs</td>
<td>☑️</td>
<td>☑️</td>
<td></td>
</tr>
<tr>
<td>Ability to Control Desired Outcomes</td>
<td>☑️</td>
<td>☑️</td>
<td></td>
</tr>
<tr>
<td>Early Contributions to Design</td>
<td>☑️</td>
<td>☑️</td>
<td></td>
</tr>
<tr>
<td>Improved Budget Management</td>
<td>☑️</td>
<td>☑️</td>
<td></td>
</tr>
<tr>
<td>Reduced Design Conflicts and RFI’s</td>
<td>☑️</td>
<td>☑️</td>
<td>☑️</td>
</tr>
<tr>
<td>Improved Schedule Management</td>
<td>☑️</td>
<td>☑️</td>
<td></td>
</tr>
<tr>
<td>Reduced Design Documentation Time</td>
<td>☑️</td>
<td>☑️</td>
<td></td>
</tr>
<tr>
<td>Improved Design Quality</td>
<td>☑️</td>
<td>☑️</td>
<td></td>
</tr>
<tr>
<td>Reduced Total Cost</td>
<td>☑️</td>
<td>☑️</td>
<td></td>
</tr>
<tr>
<td>Meeting the Schedule</td>
<td>☑️</td>
<td>☑️</td>
<td></td>
</tr>
</tbody>
</table>

Project Delivery Method Comparison

<table>
<thead>
<tr>
<th>Item Description</th>
<th>Traditional Delivery Methods</th>
<th>Integrated Delivery Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Completion During Bid Process</td>
<td>40-70%</td>
<td>80-100%</td>
</tr>
<tr>
<td>Early Contractor Involvement</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Team Structure</td>
<td>Separate contracts, “every man for himself”</td>
<td>Partnerships, collaboration</td>
</tr>
<tr>
<td>Risk Management</td>
<td>Individual, transferred when possible</td>
<td>Shared risk, managed together</td>
</tr>
<tr>
<td>Reward for Project Success</td>
<td>Individual incentive</td>
<td>Project success + team reward</td>
</tr>
<tr>
<td>Documentation</td>
<td>Not shared, minimal communication</td>
<td>Shared, open communication</td>
</tr>
<tr>
<td>Technology Use</td>
<td>Minimal</td>
<td>Extensive</td>
</tr>
</tbody>
</table>

Andrew Pino | AE Senior Thesis | Construction Management Option
Conclusion

Integrated Project Delivery Method
- True IPD offers highest level of integration
- Individual success tied directly to project success
- Single multi-party contract not appropriate

Design/Build Delivery Method
- Benefits of integration without single contract
- Co-location of major entities
- Reduces layers of design change approval
- Early contractor involvement
- Full integration not present

Recommended Structure
- Design/build

Design/Build Team
- The JBG Companies
 - Owner/Developer
- GSA
 - Client
- Subcontractors and Suppliers

Analysis 1 | Integrated Delivery
- Overview & Case Studies
- Application to Project
- Conclusion

Analysis 2 | Modular Formwork
- Formwork Systems
- Structural Breadth
- Cost and Schedule
- Mechanical Breadth

Analysis 3 | Terra Cotta
- Overview of Systems
- Cost and Schedule
- Mechanical Breadth

Conclusions and Recommendations

Acknowledgements
Analysis #2 | Modular Concrete Formwork

Problem Statement:
Wood panel post-and-beam formwork is labor intensive and time consuming.
I. Introduction

II. Project Background
 I. Site Overview
 II. Project Features

III. Analysis 1 | Integrated Delivery
 I. Overview & Case Studies
 II. Application to Project
 III. Conclusion

IV. Analysis 2 | Modular Formwork
 I. Formwork Systems
 II. Structural Breadth
 III. Cost and Schedule

V. Analysis 3 | Terra Cotta
 I. Overview of Systems
 II. Cost and Schedule
 III. Mechanical Breadth

VI. Conclusions and Recommendations

VII. Acknowledgements

Desired Benefits

Simple components
Lightweight materials
Rapid reuse cycle
Mobility

Lightweight Formwork Systems

Peri Sky Dock

Aluma Dek

Dokamatic Table

Plywood table panels
DoKart required

Lightweight
Adaptable
Complex components
I. Introduction
II. Project Background
 I. Site Overview
 II. Project Features
III. Analysis 1 | Integrated Delivery
 I. Overview & Case Studies
 II. Application to Project
 III. Conclusion
IV. Analysis 2 | Modular Formwork
 I. Formwork Systems
 II. Structural Breadth
 III. Cost and Schedule
V. Analysis 3 | Terra Cotta
 I. Overview of Systems
 II. Cost and Schedule
 III. Mechanical Breadth
VI. Conclusions and Recommendations
VII. Acknowledgements

Presentation Outline

Structural Breadth

Purpose | Redesign to a Flat Slab System

Largest Column Span

Relocated and Added Columns
Government Building

Maryland

Structural Breadth

Deflection & Punching Shear

ACI 318-11 for calculations

Two-way slab w/o drop panels

Max span of 30 ft

ACI Deflection Check

\[
h > \frac{L}{33} = \frac{30 \text{ ft} * 12}{33} = 10.9 \text{ in}
\]

Minimum slab thickness of 11 in

12 in slab thickness chosen

ACI Punching Shear Check

\[
V_u = q_u A = (640 \text{ SF}) * (352 \text{ psf}) = 225,280 \text{ lb}
\]

Allowable shear \(4*1*0.75\text{ in} = 458,205 \text{ lb} \)

\[
V_u < 0.75 * V_c = 225,280 < 0.75 \times 458,205
\]

225,280 lb < 343,654 lb, punching shear is acceptable
Presentation Outline

I. Introduction
II. Project Background
 I. Site Overview
 II. Project Features
III. Analysis 1 | Integrated Delivery
 I. Overview & Case Studies
 II. Application to Project
 III. Condusion
IV. Analysis 2 | Modular Formwork
 I. Formwork Systems
 II. Structural Breadth
 III. Cost and Schedule
V. Analysis 3 | Terra Cotta
 I. Overview of Systems
 II. Cost and Schedule
 III. Mechanical Breadth
VI. Conclusions and Recommendations
VII. Acknowledgements

Cost Analysis

Assumptions

- RSMeans labor costs
 - 65% labor reduction
- Equipment cost +20%

Cost savings calculated for single floor

<table>
<thead>
<tr>
<th>Analysis 1</th>
<th>Integrated Delivery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost Analysis</td>
<td></td>
</tr>
<tr>
<td>Existing System Costs</td>
<td></td>
</tr>
<tr>
<td>Material (62%)</td>
<td>Labor (35%)</td>
</tr>
<tr>
<td>Redesigned System Costs</td>
<td></td>
</tr>
<tr>
<td>Material (80%)</td>
<td>Labor (15%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analysis 2</th>
<th>Modular Formwork</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formwork Systems</td>
<td></td>
</tr>
<tr>
<td>Structural Breadth</td>
<td></td>
</tr>
<tr>
<td>Cost and Schedule</td>
<td></td>
</tr>
<tr>
<td>Mechanical Breadth</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analysis 3</th>
<th>Terra Cotta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview of Systems</td>
<td></td>
</tr>
<tr>
<td>Cost and Schedule</td>
<td></td>
</tr>
<tr>
<td>Mechanical Breadth</td>
<td></td>
</tr>
</tbody>
</table>

VI. Conclusions and Recommendations

VII. Acknowledgements
Schedule Analysis and Conclusion

Subsequent Cost Savings
- Roughly four week schedule reduction
- $48,058 per week general conditions costs
- Significant cost savings

<table>
<thead>
<tr>
<th>General Conditions Cost Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost per Week</td>
</tr>
<tr>
<td>$48,058</td>
</tr>
</tbody>
</table>

Conclusion
- Concrete redesign enables ideal use of modular formwork
- Peri Sky Deck offers significant cost and time savings
- Labor savings outweigh added material costs
- Schedule reduction applies to the critical path

Roughly four week schedule reduction
- Peri Sky Deck
- General Conditions Reduction

Total Analysis Cost Savings

<table>
<thead>
<tr>
<th>Use of Sky Deck Formwork System</th>
<th>$465,742</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Conditions Reduction</td>
<td>$192,232</td>
</tr>
</tbody>
</table>

Total Cost Savings of Analysis #2: $437,974
Analysis #3 | Terra Cotta Rain Screen Pre-Fabrication

Problem Statement:
The construction of the terra cotta rain screen is complex, involving four layers to be installed consecutively.
Overview of Systems

Current Rain Screen Design

Risk Factors
- Complex process
- Labor intensive
- Time consuming

Components
- Sheathing with z-girts
- Insulation
- Support profile
- Terra cotta panels

Government Building Maryland
Overview of Systems

I. Introduction
II. Project Background
 I. Site Overview
 II. Project Features
III. Analysis 1 | Integrated Delivery
 I. Overview & Case Studies
 II. Application to Project
 III. Conclusion
IV. Analysis 2 | Modular Formwork
 I. Formwork Systems
 II. Structural Breadth
 III. Cost and Schedule
V. Analysis 3 | Terra Cotta
 I. Overview of Systems
 II. Cost and Schedule
 III. Mechanical Breadth
VI. Conclusions and Recommendations
VII. Acknowledgements

Andrew Pino | AE Senior Thesis | Construction Management Option
Overview of Systems

I. Introduction
II. Project Background
 I. Site Overview
 II. Project Features
III. Analysis 1 | Integrated Delivery
 I. Overview & Case Studies
 II. Application to Project
 III. Conclusion
IV. Analysis 2 | Modular Formwork
 I. Formwork Systems
 II. Structural Breadth
 III. Cost and Schedule
V. Analysis 3 | Terra Cotta
 I. Overview of Systems
 II. Cost and Schedule
 III. Mechanical Breadth
VI. Conclusions and Recommendations
VII. Acknowledgements
Overview of Systems

Proposed Panel Layout

Panel Sizing

Width: 10'-0" - 17'-6"
Height: 10'-0" - 26'-9"
Total number of panels: 208
Presentation Outline

I. Introduction
II. Project Background
 I. Site Overview
 II. Project Features
III. Analysis 1 | Integrated Delivery
 I. Overview & Case Studies
 II. Application to Project
 III. Conclusion
IV. Analysis 2 | Modular Formwork
 I. Formwork Systems
 II. Structural Breadth
 III. Cost and Schedule
V. Analysis 3 | Terra Cotta
 I. Overview of Systems
 II. Cost and Schedule
 III. Mechanical Breadth
VI. Conclusions and Recommendations
VII. Acknowledgements

Cost Analysis

<table>
<thead>
<tr>
<th>System</th>
<th>Area (SF)</th>
<th>Cost/SF**</th>
<th>Cost</th>
<th>Combined Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terra Cotta</td>
<td>22,000</td>
<td>$99</td>
<td>$2,171,000</td>
<td>$8,959,500</td>
</tr>
<tr>
<td>Glazing</td>
<td>73,500</td>
<td>$93</td>
<td>$6,693,500</td>
<td></td>
</tr>
<tr>
<td>Unitized Terra Cotta + Glazing Panels</td>
<td>30,318</td>
<td>$115</td>
<td>$6,631,570</td>
<td>$10,054,496</td>
</tr>
<tr>
<td>Remaining Glazing</td>
<td>42,182</td>
<td>$93</td>
<td>$3,922,266</td>
<td></td>
</tr>
</tbody>
</table>
| | | | | **Difference of Combined Scopes vs. Separate Scopes** $1,458,996

Schedule Analysis

<table>
<thead>
<tr>
<th>System</th>
<th>Start Date</th>
<th>End Date</th>
<th>Total Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original Terra Cotta</td>
<td>13 Sept 2012</td>
<td>13 Apr 2013</td>
<td>153 days</td>
</tr>
<tr>
<td>Unitized Terra Cotta Panels</td>
<td>13 Sept 2012</td>
<td>14 Mar 2013</td>
<td>131 days</td>
</tr>
</tbody>
</table>

Glazing and terra cotta scopes combined under unitized system
- Precast concrete excluded as it does not change
- Square-foot cost data provided by DAVIS and others

Façade Breakdown

- Precast Concrete: 49,000 SF
- Terra Cotta: 22,000 SF
- Glazing: 73,500 SF
- Total Building: 144,500 SF

Schedule Comparison

<table>
<thead>
<tr>
<th>System</th>
<th>Original Terra Cotta</th>
<th>Unitized Terra Cotta Panels</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Original</td>
<td>Unitized</td>
</tr>
<tr>
<td></td>
<td>Sept, Oct, Nov, Dec</td>
<td>Sept, Oct, Nov, Dec</td>
</tr>
<tr>
<td></td>
<td>Jan, Feb, Mar, Apr</td>
<td>Jan, Feb, Mar, Apr</td>
</tr>
</tbody>
</table>

Façade Cost Estimate Data

- Glazing and terra cotta scopes combined under unitized system
- Precast concrete excluded as it does not change
- Square-foot cost data provided by DAVIS and others
Presentation Outline

I. Introduction
II. Project Background
 I. Site Overview
 II. Project Features
III. Analysis 1 | Integrated Delivery
 I. Formwork Systems
 II. Structural Breadth
 III. Cost and Schedule
V. Analysis 3 | Terra Cotta
 I. Overview of Systems
 II. Cost and Schedule
 III. Mechanical Breadth
VI. Conclusions and Recommendations
VII. Acknowledgements

Mechanical Breadth

Breadth Assumptions

Interior:
- RH = 40%
- T = 28°C (82°F) = 297 K

Exterior:
- RH = 80%
- T = -15°C (5°F) = 258 K

Breadth Results

- Relative humidity between layers never exceeds 100%
- Condensation will not occur in this assembly

Building Interiors

<table>
<thead>
<tr>
<th>Material/Layer</th>
<th>P (Pa)</th>
<th>P_e (Pa)</th>
<th>RH (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building Interior</td>
<td>28</td>
<td>3762</td>
<td>1505</td>
</tr>
<tr>
<td>Interior Film</td>
<td>25.92</td>
<td>3329</td>
<td>1504.9</td>
</tr>
<tr>
<td>Drywall</td>
<td>24.51</td>
<td>3001.1</td>
<td>363.7</td>
</tr>
<tr>
<td>Air Space</td>
<td>21.37</td>
<td>2962.5</td>
<td>346.3</td>
</tr>
<tr>
<td>Type 4 Insulation</td>
<td>-13.25</td>
<td>256.8</td>
<td>163.4</td>
</tr>
<tr>
<td>Air Space</td>
<td>14.27</td>
<td>2014.1</td>
<td>160.7</td>
</tr>
<tr>
<td>Terra Cotta Panel</td>
<td>-14.40</td>
<td>198.1</td>
<td>152.1</td>
</tr>
<tr>
<td>Exterior Film</td>
<td>-14.00</td>
<td>190.0</td>
<td>152</td>
</tr>
<tr>
<td>Building Exterior</td>
<td>-15.00</td>
<td>190.0</td>
<td>152</td>
</tr>
</tbody>
</table>

Conclusion

A unitized panel system would:
- Create a streamlined process
- Reduce terra cotta installation duration by roughly three weeks
- Mitigate risk of labor and weather variables
- Produce a higher quality end product
- Cost an additional $1,458,996
Presentation Outline

Final Recommendations

- **Analysis #1 | Integrated Delivery Methods**
 - Design/build better facilitates the design change approval process
 - Co-location of major entities offers ease of communication
 - Early contractor involvement is critical

- **Analysis #2 | Modular Concrete Formwork**
 - Concrete redesign enables ideal use of the Peri Sky Deck
 - Schedule reduction of one month
 - Applies to the critical path
 - Total cost savings of $437,974

- **Analysis #3 | Terra Cotta Rain Screen Pre-Fabrication**
 - Three week schedule reduction
 - Additional cost of $1,458,996
 - More streamlined installation process
 - Factory assembly means improved quality control

Analysis #1

- Integrated Delivery Methods
- Design/build better facilitates the design change approval process
- Co-location of major entities offers ease of communication
- Early contractor involvement is critical

Analysis #2

- Modular Concrete Formwork
- Concrete redesign enables ideal use of the Peri Sky Deck
- Schedule reduction of one month
- Applies to the critical path
- Total cost savings of $437,974

Analysis #3

- Terra Cotta Rain Screen Pre-Fabrication
- Three week schedule reduction
- Additional cost of $1,458,996
- More streamlined installation process
- Factory assembly means improved quality control

Table

<table>
<thead>
<tr>
<th>Total Cost Savings</th>
<th>Cost Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use of Sky Deck Formwork System</td>
<td>$269,762</td>
</tr>
<tr>
<td>General Conditions Reduction</td>
<td>$169,272</td>
</tr>
<tr>
<td>Total Cost Savings of Analysis #2</td>
<td>$437,974</td>
</tr>
</tbody>
</table>
I. Introduction

II. Project Background
 I. Site Overview
 II. Project Features

III. Analysis 1 | Integrated Delivery
 I. Overview & Case Studies
 II. Application to Project
 III. Conclusion

IV. Analysis 2 | Modular Formwork
 I. Formwork Systems
 II. Structural Breadth
 III. Cost and Schedule

V. Analysis 3 | Terra Cotta
 I. Overview of Systems
 II. Cost and Schedule
 III. Mechanical Breadth

VI. Conclusions and Recommendations

VII. Acknowledgements

Acknowledgements

Academic Acknowledgements

Penn State Architectural Engineering Faculty
- Dr. John Messner – CM Advisor
- Ray Sowers – CM Advisor
- Dr. Linda Hanagan – Structural Advisor

Industry Acknowledgements

The DAVIS Construction Project Team
- Tyler Moyer – DAVIS Project Manager
- David Gibbons III – DAVIS Senior Project Manager
- Leaha Martynuska – DAVIS Project Manager

PACE Industry Members

Family and Friends
I. Introduction
II. Project Background
 I. Site Overview
 II. Project Features
III. Analysis 1 | Integrated Delivery
 I. Overview & Case Studies
 II. Application to Project
 III. Conclusion
IV. Analysis 2 | Modular Formwork
 I. Formwork Systems
 II. Structural Breadth
 III. Cost and Schedule
V. Analysis 3 | Terra Cotta
 I. Overview of Systems
 II. Cost and Schedule
VI. Conclusions and Recommendations
VII. Acknowledgements
VIII. Appendix

Appendix
Concrete Systems Cost Estimate

Pre-fabricated Terra Cotta Panel Sizing

<table>
<thead>
<tr>
<th>Panel Dimension</th>
<th>Quantity</th>
<th>Panel Size (SF)</th>
<th>Approximate Weight (lb/ft^2)</th>
<th>Weight per Panel</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>3</td>
<td>112.50</td>
<td>17.50</td>
<td>525</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>150.50</td>
<td>22.50</td>
<td>450</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>184.50</td>
<td>27.50</td>
<td>450</td>
</tr>
<tr>
<td>16</td>
<td>2</td>
<td>220.50</td>
<td>32.50</td>
<td>440</td>
</tr>
<tr>
<td>18</td>
<td>2</td>
<td>256.00</td>
<td>37.50</td>
<td>430</td>
</tr>
<tr>
<td>20</td>
<td>2</td>
<td>291.50</td>
<td>42.50</td>
<td>420</td>
</tr>
<tr>
<td>22</td>
<td>2</td>
<td>328.50</td>
<td>47.50</td>
<td>410</td>
</tr>
<tr>
<td>24</td>
<td>2</td>
<td>366.50</td>
<td>52.50</td>
<td>400</td>
</tr>
<tr>
<td>26</td>
<td>2</td>
<td>406.50</td>
<td>57.50</td>
<td>390</td>
</tr>
<tr>
<td>28</td>
<td>2</td>
<td>446.50</td>
<td>62.50</td>
<td>380</td>
</tr>
<tr>
<td>30</td>
<td>2</td>
<td>488.50</td>
<td>67.50</td>
<td>370</td>
</tr>
<tr>
<td>32</td>
<td>2</td>
<td>532.50</td>
<td>72.50</td>
<td>360</td>
</tr>
<tr>
<td>34</td>
<td>2</td>
<td>578.50</td>
<td>77.50</td>
<td>350</td>
</tr>
<tr>
<td>36</td>
<td>2</td>
<td>626.50</td>
<td>82.50</td>
<td>340</td>
</tr>
<tr>
<td>38</td>
<td>2</td>
<td>675.50</td>
<td>87.50</td>
<td>330</td>
</tr>
<tr>
<td>40</td>
<td>2</td>
<td>726.50</td>
<td>92.50</td>
<td>320</td>
</tr>
<tr>
<td>42</td>
<td>2</td>
<td>779.50</td>
<td>97.50</td>
<td>310</td>
</tr>
<tr>
<td>44</td>
<td>2</td>
<td>834.50</td>
<td>102.50</td>
<td>300</td>
</tr>
<tr>
<td>46</td>
<td>2</td>
<td>891.50</td>
<td>107.50</td>
<td>290</td>
</tr>
<tr>
<td>48</td>
<td>2</td>
<td>950.50</td>
<td>112.50</td>
<td>280</td>
</tr>
<tr>
<td>50</td>
<td>2</td>
<td>1010.00</td>
<td>117.50</td>
<td>270</td>
</tr>
<tr>
<td>52</td>
<td>2</td>
<td>1070.50</td>
<td>122.50</td>
<td>260</td>
</tr>
<tr>
<td>54</td>
<td>2</td>
<td>1132.50</td>
<td>127.50</td>
<td>250</td>
</tr>
<tr>
<td>56</td>
<td>2</td>
<td>1196.50</td>
<td>132.50</td>
<td>240</td>
</tr>
<tr>
<td>58</td>
<td>2</td>
<td>1262.50</td>
<td>137.50</td>
<td>230</td>
</tr>
<tr>
<td>60</td>
<td>2</td>
<td>1330.50</td>
<td>142.50</td>
<td>220</td>
</tr>
<tr>
<td>62</td>
<td>2</td>
<td>1400.50</td>
<td>147.50</td>
<td>210</td>
</tr>
<tr>
<td>64</td>
<td>2</td>
<td>1472.50</td>
<td>152.50</td>
<td>200</td>
</tr>
</tbody>
</table>
Appendix

Concrete Quantity Take-offs

<table>
<thead>
<tr>
<th>Concrete Component</th>
<th>Volume (cu ft)</th>
<th>Weight (lbs)</th>
<th>Area (sq ft)</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slab 1</td>
<td>1000</td>
<td>12500</td>
<td>500</td>
<td>2000</td>
</tr>
<tr>
<td>Slab 2</td>
<td>1500</td>
<td>18000</td>
<td>750</td>
<td>3000</td>
</tr>
<tr>
<td>Column A</td>
<td>500</td>
<td>1250</td>
<td>100</td>
<td>500</td>
</tr>
<tr>
<td>Column B</td>
<td>750</td>
<td>1875</td>
<td>150</td>
<td>750</td>
</tr>
<tr>
<td>Beam 1</td>
<td>250</td>
<td>625</td>
<td>50</td>
<td>250</td>
</tr>
<tr>
<td>Beam 2</td>
<td>375</td>
<td>937.5</td>
<td>75</td>
<td>375</td>
</tr>
<tr>
<td>Wall A</td>
<td>1000</td>
<td>12500</td>
<td>500</td>
<td>1000</td>
</tr>
<tr>
<td>Wall B</td>
<td>1500</td>
<td>18000</td>
<td>750</td>
<td>1500</td>
</tr>
<tr>
<td>Roof</td>
<td>500</td>
<td>1250</td>
<td>50</td>
<td>500</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Material</th>
<th>Properties</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete</td>
<td>Strength</td>
<td>Grade 75</td>
</tr>
<tr>
<td>Steel</td>
<td>Type</td>
<td>Rebar</td>
</tr>
<tr>
<td>Wood</td>
<td>Grade</td>
<td>Spruce</td>
</tr>
</tbody>
</table>
Presentation Outline

I. Introduction
II. Project Background
 I. Site Overview
 II. Project Features
III. Analysis 1 | Integrated Delivery
 I. Overview & Case Studies
 II. Application to Project
 III. Conclusion
IV. Analysis 2 | Modular Formwork
 I. Formwork Systems
 II. Structural Breadth
 III. Cost and Schedule
V. Analysis 3 | Terra Cotta
 I. Overview of Systems
 II. Cost and Schedule
VI. Conclusions and Recommendations
VII. Acknowledgements
VIII. Appendix

Appendix

Concrete Quantity Take-offs

<table>
<thead>
<tr>
<th>Description</th>
<th>Units</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete 1</td>
<td>kg</td>
<td>345.2</td>
</tr>
<tr>
<td>Concrete 2</td>
<td>kg</td>
<td>567.8</td>
</tr>
<tr>
<td>Concrete 3</td>
<td>kg</td>
<td>123.4</td>
</tr>
<tr>
<td>Concrete 4</td>
<td>kg</td>
<td>789.6</td>
</tr>
<tr>
<td>Concrete 5</td>
<td>kg</td>
<td>345.2</td>
</tr>
<tr>
<td>Concrete 6</td>
<td>kg</td>
<td>567.8</td>
</tr>
<tr>
<td>Concrete 7</td>
<td>kg</td>
<td>123.4</td>
</tr>
<tr>
<td>Concrete 8</td>
<td>kg</td>
<td>789.6</td>
</tr>
<tr>
<td>Concrete 9</td>
<td>kg</td>
<td>345.2</td>
</tr>
<tr>
<td>Concrete 10</td>
<td>kg</td>
<td>567.8</td>
</tr>
<tr>
<td>Concrete 11</td>
<td>kg</td>
<td>123.4</td>
</tr>
<tr>
<td>Concrete 12</td>
<td>kg</td>
<td>789.6</td>
</tr>
</tbody>
</table>

Government Building
Maryland
Appendix
Concrete Quantity Take-offs
I. Introduction
II. Project Background
 I. Site Overview
 II. Project Features
III. Analysis 1 | Integrated Delivery
 I. Overview & Case Studies
 II. Application to Project
 III. Conclusion
IV. Analysis 2 | Modular Formwork
 I. Formwork Systems
 II. Structural Breadth
 III. Cost and Schedule
V. Analysis 3 | Terra Cotta
 I. Overview of Systems
 II. Cost and Schedule
VI. Conclusions and Recommendations
VII. Acknowledgements
VIII. Appendix

Appendix

Government Building
Maryland